Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Zhi Min Jin, ${ }^{\text {a }}$ * Lin He, ${ }^{\text {b }}$ Liang Shen, ${ }^{\mathrm{c}}$ Mei Chao Li ${ }^{\mathrm{d}}$ and Mao Lin Hu ${ }^{\text {e }}$
${ }^{\text {a }}$ College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, People's Republic of China, ${ }^{\mathbf{b}}$ Department of Chemistry, Zhejiang University, Hangzhou, People's Republic of China, ${ }^{\text {c }}$ Department of Chemistry, Hangzhou Teachers College, Hangzhou, People's Republic of China, ${ }^{\text {d College of }}$ Chemical Engineering, Zhejiang University of Technology, Hangzhou, People's Republic of China, and ${ }^{\text {e }}$ Department of Chemistry, Wenzhou Normal College, Wenzhou, Zhejiang, People's Republic of China

Correspondence e-mail: zimichem@sina.com

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.036$
$w R$ factor $=0.095$
Data-to-parameter ratio $=12.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Tris($1 H$-imidazole- κN^{3})(DL-malato- $\kappa^{3} O, O^{\prime}, O^{\prime \prime}$)cobalt(II)

In the title compound, $\left[\mathrm{Co}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{5}\right)\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{3}\right]$, the cobalt(II) cation is located at the center of a distorted octahedron, being coordinated by three N atoms from three imidazole ligands and three O atoms from a malate ion. In the crystal structure, enantiomers are linked by pairs of bifurcated $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to form racemic dimers.

Comment

Nitrogen heterocycles are extremely important fungicides (Berger et al., 1986). Imidazole derivatives have been extensively studied since the discovery of the broad-spectrum antimycotic activity of chemotherapeutic agents, such as bifonazole, clotrimazole, econazole, isoconazole, ketoconazole, miconazole and ticonazole. Malic acid is a natural constituent and common metabolite of plants and animals, being involved in the Krebs cycle and in the glyoxylic acid cycle. As part of a search for a potential fungicide, in the form of a coordination compound, (I), was synthesized and subjected to X-ray analysis.

(I)

The molecular structure of (I) is shown in Fig. 1 with the atom numbering. The title compound has $\mathrm{Co}-\mathrm{N}$ bond lengths ranging from 2.101 (2) to 2.127 (2) \AA and $\mathrm{Co}-\mathrm{O}$ bond lengths varying between 2.110 (2) and 2.141 (2) \AA. The bond angles between neighbouring atoms round the $\mathrm{Co}^{\mathrm{II}}$ atom range from 74.92 (9) to $97.43(9)^{\circ}$. Therefore, the coordination geometry formed by the N and O atoms round the $\mathrm{Co}^{\mathrm{II}}$ cation is that of a distorted octahedron. Three O atoms of the malate ion are involved in the coordination. Such a pattern was also found in calcium l-(-)-malate (Devatine et al., 2003), but the pattern is different from the situation found in a nickel complex of malate (Zhou et al., 2002).

The malate ion shows different sets of bond lengths in the carboxylate groups, viz. O4-C4 [1.265 (4) Å] and O5-C4 $[1.225(4) \AA$ Å], and $\mathrm{O} 1-\mathrm{C} 1 \quad[1.252(3) \AA]$ and $\mathrm{O} 2-\mathrm{C} 1$ $[1.252$ (4) \AA]. This difference may be due to the different hydrogen bonding in which the two carboxylate groups are

Received 15 October 2003
Accepted 16 October 2003 Online 23 October 2003

Figure 1
The structure of the title compound, showing 40% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2
The packing, viewed down the a axis, with hydrogen bonds indicated by dashed lines.
involved. Atoms O4 and O5 are acceptors of two strong hydrogen bonds, viz. $\mathrm{N} 6-\mathrm{H}^{\prime} \cdots \mathrm{O} 4^{\mathrm{iii}}$ and $\mathrm{N} 2-\mathrm{H}^{\prime} \cdots \mathrm{O} 5^{\mathrm{i}}$, while O 1 and O 2 are acceptors in a weaker bifurcated interaction, viz. $\mathrm{N} 4-\mathrm{H} 4^{\prime} \cdots \mathrm{O} 1^{\mathrm{ii}}$ and $\mathrm{N} 4-\mathrm{H} 4^{\prime} \cdots \mathrm{O} 2^{\mathrm{ii}}$ (symmetry codes are in Table 2). As for the imidazole ligands, the $\mathrm{N} 3=\mathrm{C} 10$ bond length $[1.302$ (4) \AA] is slightly shorter than those of $\mathrm{N} 5=\mathrm{C} 13[1.321$ (4) \AA] and $\mathrm{N} 1=\mathrm{C} 7$ [1.317 (4) \AA], and comparable with the corresponding bond length
[1.308 (2) \AA] observed in hexakis(imidazole)nickel(II) disalicylate (Jian et al., 1999).

A molecular packing diagram is given in Fig. 2. In the crystal structure, enantiomers are linked by pairs of bifurcated hydrogen bonds, $\mathrm{N} 4-\mathrm{H} 4^{\prime} \cdots \mathrm{O} 1^{\mathrm{ii}}$ and $\mathrm{N} 4-\mathrm{H} 4^{\prime} \cdots \mathrm{O} 2^{\mathrm{ii}}$, to form dimers. Such dimers are further linked by $\mathrm{N} 2-\mathrm{H}^{\prime} \cdots \mathrm{O}^{\mathrm{i}}$, $\mathrm{N} 6-\mathrm{H}^{\prime} \cdots \mathrm{O} 4^{\text {iii }}$ and $\mathrm{O} 3-\mathrm{H} 3 \mathrm{O} \cdots \mathrm{O} 2^{\text {iv }}$ hydrogen bonds (Table 2).

Experimental

DL-Malic acid and $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2}$ in a 1:1 molar ratio were mixed together with water and heated to afford a clear solution. Dilute NaOH (0.05 N) was used to adjust the pH to approximately 7. Imidazole (in a 3:1 molar ratio of imidazole/DL-malic acid) was added to the solution while maintaining the temperature at 353 K . Crystals of the title compound were formed by slow evaporation of water at 293 K for a week.

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{5}\right)\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{3}\right]$
$M_{r}=395.25$
Monoclinic, $P 2_{1} / c$
$a=8.482$ (1) \AA
$b=8.597$ (1) \AA
$c=22.489$ (4) A
$\beta=90.71$ (1) ${ }^{\circ}$
$V=1639.8(4) \AA^{3}$
$Z=4$
$D_{x}=1.601 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 29 reflections
$\theta=3.0-15.7^{\circ}$
$\mu=1.09 \mathrm{~mm}^{-1}$
$T=296(2) \mathrm{K}$
Prism, pink
$0.52 \times 0.52 \times 0.44 \mathrm{~mm}$

Data collection

Siemens $P 4$ diffractometer
$R_{\text {int }}=0.012$
ω scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.575, T_{\text {max }}=0.620$
3099 measured reflections
2890 independent reflections
2392 reflections with $I>2 \sigma(I)$
$\theta_{\text {max }}=25.0^{\circ}$
$h=0 \rightarrow 10$
$k=0 \rightarrow 10$
$l=-26 \rightarrow 26$
3 standard reflections every 97 reflections intensity decay: 1.4%

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.095$
$S=1.08$
2890 reflections
230 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.044 P)^{2}\right. \\
& \quad+1.2283 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.51 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.31 \mathrm{e} \AA^{-3} \\
& \text { Extinction correction: } S H E L X L 97 \\
& \text { Extinction coefficient: } 0.0066(7)
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Co}-\mathrm{N} 3$	$2.101(2)$	$\mathrm{O} 2-\mathrm{C} 1$	$1.252(4)$
$\mathrm{Co}-\mathrm{O} 4$	$2.110(2)$	$\mathrm{O} 3-\mathrm{C} 3$	$1.451(4)$
$\mathrm{Co}-\mathrm{N} 1$	$2.114(3)$	$\mathrm{O} 4-\mathrm{C} 4$	$1.265(4)$
$\mathrm{Co}-\mathrm{O} 3$	$2.120(2)$	$\mathrm{O} 5-\mathrm{C} 4$	$1.225(4)$
$\mathrm{Co}-\mathrm{N} 5$	$2.127(2)$	$\mathrm{N} 1-\mathrm{C} 7$	$1.317(4)$
$\mathrm{Co}-\mathrm{O} 1$	$2.141(2)$	$\mathrm{N} 3-\mathrm{C} 10$	$1.302(4)$
$\mathrm{O} 1-\mathrm{C} 1$	$1.252(3)$	$\mathrm{N} 5-\mathrm{C} 13$	$1.321(4)$
			$94.50(10)$
$\mathrm{N} 3-\mathrm{Co}-\mathrm{O} 4$	$93.18(9)$	$\mathrm{N} 1-\mathrm{Co}-\mathrm{N} 5$	$97.43(9)$
$\mathrm{N} 3-\mathrm{Co}-\mathrm{N} 1$	$94.26(10)$	$\mathrm{O} 3-\mathrm{Co}-\mathrm{N} 5$	$89.73(8)$
$\mathrm{O} 4-\mathrm{Co}-\mathrm{N} 1$	$91.33(9)$	$\mathrm{N} 3-\mathrm{Co}-\mathrm{O} 1$	$85.21(8)$
$\mathrm{O} 4-\mathrm{Co}-\mathrm{O} 3$	$74.9(9)$	$\mathrm{O} 4-\mathrm{Co}-\mathrm{O} 1$	$84.11(8)$
$\mathrm{N} 1-\mathrm{Co}-\mathrm{O} 3$	$91.33(9)$	$\mathrm{O} 3-\mathrm{Co}-\mathrm{O} 1$	$88.45(9)$
$\mathrm{N} 3-\mathrm{Co}-\mathrm{N} 5$	$93.85(9)$	$\mathrm{N} 5-\mathrm{Co}-\mathrm{O} 1$	

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ}{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 2-\mathrm{H} 2^{\prime} \cdots \mathrm{O} 5^{\mathrm{i}}$	0.86	1.99	2.828 (4)	165
$\mathrm{N} 4-\mathrm{H} 4^{\prime} \cdots \mathrm{O} 1^{\text {ii }}$	0.86	2.13	2.907 (4)	150
$\mathrm{N} 4-\mathrm{H} 4^{\prime} \cdots \mathrm{O} 2^{\text {ii }}$	0.86	2.25	3.025 (4)	149
$\mathrm{N} 6-\mathrm{H}^{\prime} \cdots \mathrm{O} 4^{\text {iii }}$	0.86	1.91	2.755 (3)	168
$\mathrm{O} 3-\mathrm{H} 3 \mathrm{O} \cdots \mathrm{O}^{\text {iv }}$	0.88 (4)	2.27 (4)	2.572 (3)	100 (3)

Symmetry codes: (i) $x, y-1, z$; (ii) $-1-x, 1-y,-1-z$; (iii) $x-1, y, z$; (iv) $-1-x, y-\frac{1}{2},-\frac{1}{2}-z$.

The hydroxy H atom was located in a difference Fourier map and refined isotropically. All the other H atoms were placed in calculated positions ($\mathrm{N}-\mathrm{H}=0.86$ and $\mathrm{C}-\mathrm{H}=0.93-0.98 \AA$) and refined in the riding mode, with isotropic displacement parameters 1.2 times $U_{\text {eq }}$ of the parent atoms.

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS; data reduction: SHELXTL (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular
graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work was supported by the Education Commission of Zhejiang Province, People's Republic of China (No. 20020268).

References

Berger, D, Büchel, K. H., Plempel, M. \& Zywetz, A. (1986). Mycosen, 29, 221229.

Devatine, A., Canselier, J. P., Gabas, N. \& Jaud, J. (2003). J. Chem. Crystallogr. 33, 85-90.
Jian, F. F., Wang, Z. X., Bai, Z. P., You, X. Z., Fun, H.-K. \& Chinnakali, K. (1999). J. Chem. Crystallogr. 29, 359-363.

North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. Version 97-1. University of Göttingen, Germany.
Siemens (1996). XSCANS and SHELXTL. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Zhou, Z. H., Ye, J. J., Deng, Y. F., Wang, G., Gao, J. X. \& Wan, H. L. (2002). Polyhedron, 21, 787-790.

