Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Zhi Min Jin,^a* Lin He,^b Liang Shen,^c Mei Chao Li^d and Mao Lin Hu^e

^aCollege of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, People's Republic of China, ^bDepartment of Chemistry, Zhejiang University, Hangzhou, People's Republic of China, ^cDepartment of Chemistry, Hangzhou Teachers College, Hangzhou, People's Republic of China, ^dCollege of Chemical Engineering, Zhejiang University of Technology, Hangzhou, People's Republic of China, and ^eDepartment of Chemistry, Wenzhou Normal College, Wenzhou, Zhejiang, People's Republic of China

Correspondence e-mail: zimichem@sina.com

Key indicators

Single-crystal X-ray study T = 296 KMean $\sigma(C-C) = 0.005 \text{ Å}$ R factor = 0.036 wR factor = 0.095 Data-to-parameter ratio = 12.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

Tris(1*H*-imidazole- κN^3)(DL-malato- $\kappa^3 O, O', O''$)cobalt(II)

In the title compound, $[Co(C_4H_4O_5)(C_3H_4N_2)_3]$, the cobalt(II) cation is located at the center of a distorted octahedron, being coordinated by three N atoms from three imidazole ligands and three O atoms from a malate ion. In the crystal structure, enantiomers are linked by pairs of bifurcated N-H···O hydrogen bonds to form racemic dimers.

Received 15 October 2003 Accepted 16 October 2003 Online 23 October 2003

Comment

Nitrogen heterocycles are extremely important fungicides (Berger *et al.*, 1986). Imidazole derivatives have been extensively studied since the discovery of the broad-spectrum antimycotic activity of chemotherapeutic agents, such as bifonazole, clotrimazole, econazole, isoconazole, ketoconazole, miconazole and ticonazole. Malic acid is a natural constituent and common metabolite of plants and animals, being involved in the Krebs cycle and in the glyoxylic acid cycle. As part of a search for a potential fungicide, in the form of a coordination compound, (I), was synthesized and subjected to X-ray analysis.

The molecular structure of (I) is shown in Fig. 1 with the atom numbering. The title compound has Co–N bond lengths ranging from 2.101 (2) to 2.127 (2) Å and Co–O bond lengths varying between 2.110 (2) and 2.141 (2) Å. The bond angles between neighbouring atoms round the Co^{II} atom range from 74.92 (9) to 97.43 (9)°. Therefore, the coordination geometry formed by the N and O atoms round the Co^{II} cation is that of a distorted octahedron. Three O atoms of the malate ion are involved in the coordination. Such a pattern was also found in calcium L-(–)-malate (Devatine *et al.*, 2003), but the pattern is different from the situation found in a nickel complex of malate (Zhou *et al.*, 2002).

The malate ion shows different sets of bond lengths in the carboxylate groups, *viz*. O4–C4 [1.265 (4) Å] and O5–C4 [1.225 (4) Å], and O1–C1 [1.252 (3) Å] and O2–C1 [1.252 (4) Å]. This difference may be due to the different hydrogen bonding in which the two carboxylate groups are

metal-organic papers

Figure 1

The structure of the title compound, showing 40% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2

The packing, viewed down the *a* axis, with hydrogen bonds indicated by dashed lines.

involved. Atoms O4 and O5 are acceptors of two strong hydrogen bonds, viz. N6-H6'...O4ⁱⁱⁱ and N2-H2'...O5ⁱ, while O1 and O2 are acceptors in a weaker bifurcated interaction, viz. N4-H4'...O1ⁱⁱ and N4-H4'...O2ⁱⁱ (symmetry codes are in Table 2). As for the imidazole ligands, the N3=C10 bond length [1.302 (4) Å] is slightly shorter than those of N5=C13 [1.321 (4) Å] and N1=C7 [1.317 (4) Å], and comparable with the corresponding bond length

[1.308 (2) Å] observed in hexakis(imidazole)nickel(II) disalicylate (Jian et al., 1999).

A molecular packing diagram is given in Fig. 2. In the crystal structure, enantiomers are linked by pairs of bifurcated hydrogen bonds, N4-H4'···O1ⁱⁱ and N4-H4'···O2ⁱⁱ, to form dimers. Such dimers are further linked by $N2-H2' \cdots O5^{i}$, N6-H6' \cdots O4ⁱⁱⁱ and O3-H3O \cdots O2^{iv} hydrogen bonds (Table 2).

Experimental

DL-Malic acid and Co(NO₃)₂ in a 1:1 molar ratio were mixed together with water and heated to afford a clear solution. Dilute NaOH (0.05 N) was used to adjust the pH to approximately 7. Imidazole (in a 3:1 molar ratio of imidazole/DL-malic acid) was added to the solution while maintaining the temperature at 353 K. Crystals of the title compound were formed by slow evaporation of water at 293 K for a week.

Crystal data

а h

$[Co(C_4H_4O_5)(C_3H_4N_2)_3]$	$D_x = 1.601 \text{ Mg m}^{-3}$
$M_r = 395.25$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 29
a = 8.482(1) Å	reflections
b = 8.597 (1) Å	$\theta = 3.015.7^{\circ}$
c = 22.489 (4) Å	$\mu = 1.09 \text{ mm}^{-1}$
$\beta = 90.71 \ (1)^{\circ}$	T = 296 (2) K
$V = 1639.8 (4) \text{ Å}^3$	Prism, pink
Z = 4	$0.52 \times 0.52 \times 0.44 \text{ mm}$

Data collection

Siemens P4 diffractometer ω scans Absorption correction: ψ scan (North et al., 1968) $T_{\min} = 0.575, T_{\max} = 0.620$ 3099 measured reflections 2890 independent reflections 2392 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.036$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.044P)^{2} + 1.2283P]$
$wR(F^2) = 0.095$ S = 1.08	where $P = (F_o^2 + 2F_c^2)/3$ (Δ/σ) < 0.001
2890 reflections	$\Delta \rho_{\rm max} = 0.51 \text{ e} \text{ Å}^{-3}$
230 parameters	$\Delta \rho_{\rm min} = -0.31 \text{ e} \text{ \AA}^{-3}$
H atoms treated by a mixture of	Extinction correction: SHELXL97
independent and constrained refinement	Extinction coefficient: 0.0066 (7)

 $R_{\rm int} = 0.012$ $\theta_{\rm max} = 25.0^\circ$

 $h = 0 \rightarrow 10$

 $k = 0 \rightarrow 10$

 $l = -26 \rightarrow 26$

3 standard reflections

every 97 reflections intensity decay: 1.4%

Table 1

Selected geometric parameters (Å, °).

Co-N3	2.101 (2)	O2-C1	1.252 (4)
Co-O4	2.110 (2)	O3-C3	1.451 (4)
Co-N1	2.114 (3)	O4-C4	1.265 (4)
Co-O3	2.120 (2)	O5-C4	1.225 (4)
Co-N5	2.127 (2)	N1-C7	1.317 (4)
Co-O1	2.141 (2)	N3-C10	1.302 (4)
O1-C1	1.252 (3)	N5-C13	1.321 (4)
N3-Co-O4	93.18 (9)	N1-Co-N5	94.50 (10)
N3-Co-N1	94.26 (10)	O3-Co-N5	97.43 (9)
O4-Co-N1	91.33 (9)	N3-Co-O1	89.73 (8)
O4-Co-O3	74.92 (9)	O4-Co-O1	85.21 (8)
N1-Co-O3	91.33 (9)	O3-Co-O1	84.11 (8)
N3-Co-N5	93.85 (9)	N5-Co-O1	88.45 (9)

Table 2		
Hydrogen-bonding geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$N2-H2'\cdots O5^{i}$	0.86	1.99	2.828 (4)	165
$N4 - H4' \cdots O1^n$	0.86	2.13	2.907 (4)	150
$N4 - H4' \cdots O2''$ N6 $H6' \cdots O4^{iii}$	0.86	2.25	3.025(4)	149
$O3-H3O\cdots O2^{iv}$	0.88 (4)	2.27 (4)	2.572 (3)	100 (3)

Symmetry codes: (i) x, y - 1, z; (ii) -1 - x, 1 - y, -1 - z; (iii) x - 1, y, z; (iv) $-1 - x, y - \frac{1}{2}, -\frac{1}{2} - z$.

The hydroxy H atom was located in a difference Fourier map and refined isotropically. All the other H atoms were placed in calculated positions (N-H = 0.86 and C-H = 0.93–0.98 Å) and refined in the riding mode, with isotropic displacement parameters 1.2 times $U_{\rm eq}$ of the parent atoms.

Data collection: *XSCANS* (Siemens, 1996); cell refinement: *XSCANS*; data reduction: *SHELXTL* (Siemens, 1996); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular

graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

This work was supported by the Education Commission of Zhejiang Province, People's Republic of China (No. 20020268).

References

- Berger, D, Büchel, K. H., Plempel, M. & Zywetz, A. (1986). *Mycosen*, **29**, 221–229.
- Devatine, A., Canselier, J. P., Gabas, N. & Jaud, J. (2003). J. Chem. Crystallogr. 33, 85–90.
- Jian, F. F., Wang, Z. X., Bai, Z. P., You, X. Z., Fun, H.-K. & Chinnakali, K. (1999). J. Chem. Crystallogr. 29, 359–363.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Sheldrick, G. M. (1997). *SHELXS*97 and *SHELXL*97. Version 97-1. University of Göttingen, Germany.
- Siemens (1996). XSCANS and SHELXTL. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Zhou, Z. H., Ye, J. J., Deng, Y. F., Wang, G., Gao, J. X. & Wan, H. L. (2002). Polyhedron, **21**, 787–790.